A New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
نویسنده
چکیده مقاله:
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Materials and methods: In this study, we present a new approach to investigate the complexity of turbulent signals in short term and use this method to investigate the complexity of EEG. This method is based on signal modeling and we compared this model with the real signal. The importance of this method is its ability to estimate the complexity of short-term signals, especially in signals whose dynamics change rapidly. Results: To quantify the appropriateness of the proposed method, this method was calculated on an EEG signal and also the values of Lyapunov view were calculated by Wolf and Rosenstein and the correlation of the value obtained from the proposed method and two Lyapunov views were calculated. This value was 90% compared to Wolf method and 83% compared to Rosenstein method. Conclusion: The method used in current study, can estimate the complexity of signals in short periods. This quantifier feature is of great help for tracking rapid changes and tracking the time sequence of this change. This quantifier can also be used to detect other disturbed signals.
منابع مشابه
the effect of a selfregulatory approach on the improvement of efl learners listening comprehension
تاثیر آموزش مهارت خود محوری بر روی ارتقاء مهارت شنیداری زبان آموزان هدف این پژوهش بررسی عوامل موثر در ارتقا مهارت شنیداری زبان آموزان ایرانی بود. در مرحله اول این تحقیق پژوهشگر پس از انجام مصاحبه نود زبان آموز را با استفاده از تست ایلتس انتخاب شدند. برای بررسی عوامل عوامل موثر در ارتقا مهارت شنیداری زبان آموزان ایرانی از دو نوع فیلم ویرایش شده و ویرایش نشده استفاده گردید.برای انجام تح...
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Artificial Neural Network Based Approach to EEG Signal Simulation
In this paper a new approach to the electroencephalogram (EEG) signal simulation based on the artificial neural networks (ANN) is proposed. The aim was to simulate the spontaneous human EEG background activity based solely on the experimentally acquired EEG data. Therefore, an EEG measurement campaign was conducted on a healthy awake adult in order to obtain an adequate ANN training data set. A...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملdeveloping a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 31 شماره 199
صفحات 89- 97
تاریخ انتشار 2021-08
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023